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The usual Fresnel theory of reflection and transmission is shown to be incorrect when ap-
plied to materials in which longitudinal (electrostatic) polarization waves, such as the bulk
plasma wave (plasmon), may propagate. A new macroscopic theory incorporating polarization
waves is developed and applied to optical excitation of plasmons in metals. It is shown, that
above w, (w§=41me2/m) the reflectance of a semi-infinite slab is diminished by plasmon excita-
tion; and the mechanism of the plasma resonance absorption (predicted earlier in thin metal
films) is discussed in detail. Numerical results for Na and K are presented along with a dis-

cussion of possible experiments.

I. INTRODUCTION

On the basis of Ferrell’s physical picture pre-
dicting that plasma oscillations in metal foils
would emit radiation, ' Ferrell and Stern predicted
that plasma oscillations in metal foils could be ex-
cited optically.? The following year in independent
experiments, Yamaguchi, % and McAlister and
Stern? observed anomalous absorption of polarized
light by a thin Ag foil at the plasma frequency w,.
McAlister and Stern? quantitatively accounted for
this anomalous absorption by applying the Fresnel
equations of reflection and transmission to a slab
of material whose dielectric € (w) corresponds to
that of an electron plasma. But in contradiction
to Ferrell’s theory that only bulk-plasma oscilla-
tions couple to radiation, ! this latter theory indi-
cates that only surface-plasma oscillations are
optically excited.

In this paper, we reexamine the theory of optical
excitation of plasma oscillations, and show that
bulk oscillations are indeed excited. The difficulty
lies with the classical Fresnel equations, which
are inadequate when applied to conducting media,
i.e., media in which polarization waves are im-
portant. In Sec. II, we show why the classical
equations are inadequate, examine such trouble-
some properties of conducting media as inhomo-
geneous waves and electromagnetic (EM) boundary
conditions, and finally we derive the correct
Fresnel equations which apply to conducting media.
These new Fresnel equations are quite general,
depending only on the dispersion relations for the
EM (transverse) and the polarization (longitudinal)
waves in the medium.

Although the dispersion relations for homoge-
neous waves in an unbounded plasma are well

Do

known, in Sec. III we rederive them for inhomo-
geneous waves, showing that the dispersion rela-
tions are essentially identical for the two cases.

In Sec. IV, we apply the Fresnel equations to
semi-infinite slabs and thin films of potassium
and sodium, and present some numerical results.
Effects of the longitudinal bulk plasma wave on the
reflectance, transmittance, and absorptance of
EM waves are discussed along with possible ex-
periments for their observation.

Section V relays the present theory to similar
problems encountered in classical gas plasmas
and suggests another application of the new theory.

1. FRESNEL EQUATIONS FOR CONDUCTING MEDIA

Until recently, the classical Fresnel equations
of transmission and reflection of EM waves have
been generally applied to any homogeneous isotrop-
ic media. In particular for conducting media, the
real dielectric permittivity € was replaced by a
complex effective dielectric constant

€ops = € +14T0/ W , (2.1)

where w is the frequency of the wave and o is the
conductivity of the medium. Thus, for example,
with this modification the classical equations have
quite successfully been applied to the theory of
metal optics.?®

Since media in which electric polarization waves®
can propagate may be considered conducting, the
classical Fresnel equations were naturally ex-
tended to the problem of optical excitation of such
polarization waves, e.g., plasma oscillations* or
longitudinal optical phonons in polar crystals. 7
But these applications overlooked the fact that the
classical equations consider only transverse EM
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waves with divergence-free electric fields, i.e.,
with V- E=0. This presents no difficulty in metal
optics up to and including visible light frequencies,
because in the metal there are no measurable bulk
charge densities, and hence polarization fields, for
frequencies less than the plasma frequency w,,
which for most metals lies in the ultraviolet. But
when polarization fields become important the
classical Fresnel equations no longer apply. Two
possible reasons why this fact has been overlooked
are the ambiguity associated with inhomogeneous
waves in conducting media and the incorrect treat-
ment of boundary conditions for conducting media. ®

A. Inhomogeneous Waves

By an inhomogeneous wave, we mean a wave
whose surfaces of constant amplitude and constant
phase do not coincide. To illustrate, consider a
harmonic plane wave, represented by

- - i(Beo 2o
E(F’t):Eoet(k T =-wt) s

where k is a complex wave vector, with k :El
+ik,. The physically measurable electric field
represented by (2.2) is given by

E (%, 1) =Re[E (r, #)]

=Re[E, exp(ik, * T - iwt)] exp(-Kk,-T).
(2.3)

Thus, at a given time, the surface of constant am-
plitude is k,+F =constant, while the surface of
constant phase is El-'f =constant. Since we con-
sider only wave vectors that are constant in space
and time, these surfaces are planes normal to the
direction of k, and K,. From the above, we see
that a wave is inhomogeneous whenever the real
and imaginary parts of K have different directions.
How an inhomogeneous wave can be produced will
become apparent when we derive Snell’s Law.

Snell’s law. If 0 is a unit normal to the plane
interface separating two media, let 1l -¥ =0 define
the surface of the interface. The existence of
boundary conditions on the fields at any point on
n+¥ =0 at any time, requires that the space and
time variation of all fields be the same on n + T
=0. Consequently, the phase factors in (2. 2) for
all the waves must be equal at i *¥ =0 and inde-
pendent of the nature of the boundary conditions.
Since the time factors are trivially equal, the
condition becomes

(o' T)gogoo=(; Th.2-0,

(2.2)

(2.4)

where K, is the wave vector of the incoming wave
and k; is the wave vector of any of the possible

reflected or refracted waves. But
r=(n-T)N-10x @ xr), (2.5)

so (2. 4) becomes

HARRISON 2
ko' nx(nxT)=k; nx@xT) , (2.6)
which by means of a vector identity can be written

(Koxn -k, xn0)- (AXT)=0. (2.7)
Thus, Snell’s law, as expressed by (2, 7), states
that n and separately the real and imaginary parts
of the wave vectors k are coplanar, and the com-
ponents of the wave vectors parallel to the inter-
face are equal.

Let us now consider a homogeneous wave in
vacuum incident with an angle 6, on a semi-infi-
nite medium in which the wave vector is complex,
as in Fig, 1. Snell’s law requires

ky sin fg=Fk, sin 6 (2.8)

0=k, sin ¢ ,

and we see how and why obliquely incident homo-
geneous waves produce inhomogeneous waves in
lossy media such as metals,

We see, therefore, that while the direction of E
in a homogeneous EM wave is well defined as be-
ing transverse to the direction of propagation,
care must be taken in describing waves in lossy
media. For example, the statement that E of an
EM wave obliquely excited in a metal has a longi-
tudinal component® should be taken to mean that
the physical field has a component in the direction

LOSSY
MEDIUM

VACUUM

-
FIG. 1. Wave k; incident on some lossy medium
e
excites an inhomogeneous wave k=k; +kj.,
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of phase propagation, but it does not mean that

V.E=zo0.
B. Boundary Conditions

On a boundary between two media, on which
there are no external charges or currents, the
usual macroscopic boundary conditions are the
continuity of the tangential electric field E, the
normal displacement vector ﬁ, the tangential
magnetic field H, and the normal magnetic flux
density B.1° These boundary conditions follow
from the standard arguments which apply Max-
well’s equations to pillboxes and infinitesimal cir-
cuits passing through the boundary surface. , If one
or both of the media are conducting, the usual pro-
cedure has been to incorporate the current J into
an effective D by means of relation (2.1). But re-
cently this procedure has come under criticism, *
In the following paragraphs, we will carefully ex-
amine the derivation of the boundary conditions
and determine the correct set for a conducting
medium,

Maxwell’s equation for the magnetic field may be
written

471 - 47
Vxﬁ:;- E+?n'(Jnol+jwnd)=7 Jiotar, (2.9)

i.e., the total current consists of three compo-
nents: the pure displacement current (first term),
the polarization current, and the conduction cur-
rent., The distinction between the displacement
current and the other currents is obvious since the
former is independent of any charge. In regard

to the other two, Maxwell considered that the po-
larization current differs from the conduction cur-
rent in that the latter constitutes the motion of
free charges, while the former is associated with
bound charges. But this distinction can strictly
be made only for static fields and becomes mean-
ingless for time-dependent fields, especially those
of high frequency. Thus, from the microscopic
point of view, the current density in a medium is
the sum of the polarization and conduction cur-
rents, So if'?

j--a.- 28.5- 8, (2.10)
ot

where @ and ¢ are the real polarizability and con-

ductivity tensors, respectively, !* the current can

be written in the form of a polarization current by

replacing & by a complex polarizability

a'=a+io/w, (2.11)
or, conversely, in the form of a conduction current
by replacing ¢ by a complex conductivity

3'=0-iwa. (2.12)

If we now take the divergence of Eq. (2.9) and

apply it to the usual pillbox argument, we find that
the normal component of the total current (dis-
placement and charge current) is continuous across
the boundary surface. Let us note that for the
case of harmonic time dependence, 3t°m and f)’m
are related by a constant 4m/w, and the above
condition becomes equivalent to the continuity of
normal -ﬁe“.

Next, we apply the pillbox argument to the equa-
tion of continuity. From our microscopic view-
point all charges, which we treat explicitly, are
bulk charges, in the limit that the volume vanishes
the enclosed charge density vanishes. Hence, we
find the normal component of the charge current
density is continuous,

From this condition and the previous one, it
follows that the normal component of the displace-
ment current is also continuous. Because the
condition that tangential H is continuous comes
about from applying Eq. (2.9) to a circuit argu-
ment, it is fairly obvious that the conditions on
tangential H and normal J,,,,; are equivalent, Thus,
of the four conditions on normal Jyosa;, Jenarge, and
1/4n(a/8¢t) E and tangential T, only two are inde-
pendent, which, for reasons of convenience, we
chose to be tangential ff and normal displacement
current,

The last two conditions, the continuity of tangen-
tial E and normal H (or B) follow as usual, but
again, since the two are related only one is neces-
sary. In summary, our set of boundary conditions
are the continuity of tangential E and H and normal
displacement current, !*

C. Fresnel Equations for a Single Surface

Consider a plane linearly polarized EM wave
incident on a semi-infinite medium at an angle 6,,
as in Fig. 2. Let §,n and P be a triplet of orthog-
onal unit vectors, n being normal to the surface
separating the two media and D in the plane of in-
cidence. For simplicity, we assume the medium
on the left to be a vacuum or at worst a dispersion-
less dielectric, i.e., incapable of supporting po-
larization waves, while the medium on the right is
some general conducting, but nonmagnetic, medi-
um, Since by assumption only transverse EM
waves can propagate in medium 0 (half-space on
the left), we have only the incident and reflected
EM wave with wave vectors Kk, and k5, whose mag-
nitudes are equal. But in the conducting medium
we, in general, expect besides the EM wave field a
polarization field. We assume, and in the next
section will partially justify, that these fields may
be separated into two noninteracting waves: a
transverse EM wave with divergence-free fields

kp- Ep=0, (2.13)
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and a longitudinal polarization wave with irrota-
tional fields

k xE,=0.

The behavior of the waves in the medium is deter-
mined by the electromagnetic properties of the
medium, expressed by the dispersion relations
k(w) which determine the magnitudes of the wave
vectors, and by Snell’s law which determines the
direction of the wave vectors,

(2.14)

Eo' ﬁ:ER' §=ET ' 5=EL' 13 s

~-ky- n=kg- n. (2.15)

Since by superposition, an arbitrary direction of
polarization can be resolved into two cases, one
with B in the plane of incidence (p polarized) and
the other with E normal to the plane of incidence
(s polarized), we will consider these polarizations
separately.

p polarization. For the p-polarized case, let
the incident, reflected, and transmitted waves be
BT, 1) = BxR)E, expliKy- T - iwt), (2.16a)
EnF, 1) =BxKR)E Rp explky - T —iwt), (2.16b)

E T, t)=GxR)E, Tp explk,- T—iwt), (2.16¢)

E,&,t)=K, Eq Lp exp(k, - T -iwt), (2. 16d)
.a
ke - Tor
Ex
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FIG. 2. Reflection and refraction of s- and p-polar-
ized waves at a boundary between a nonconducting (0) and
conducting (1) medium.

)

where K is the normalized wave vector
K =ck,/w. (2.17)

Note the notation we have chosen shows explicitly
that the EM fields are divergence-free and the po-
larization fields are irrotational. Since & and H
are related by

H-KxE, (2.18)
the corresponding magnetic fields are
Hy¥,#)=5 ¢, E, exp(iK,- T -iwt), (2.19a)

He(F,t)=8 €oEoRp expliky - T —iwt), (2.19b)

Hp(F,t)=8€7E Tp exp(iky- T -iwt), (2.19c)
where ¢=K-K. (2. 20)
Later, when discussing dispersion relations, we
shall see that € corresponds to the transverse

dielectric of the media.
Applying the condition of continuity of tangential

’

i"lx(_E’g +ER)3 ) =ﬁX(ET+EL)3. 2= O, (2. 21)
to (2.16), we find, after some algebra,
(Ko)n[l _RP] = (KT)n TP + (K)pr s

where the subscripts on the K’s indicate the com-
ponents, e.g., (K),=n- K. Similarly, the con-
tinuity of the magnetic fields yields

(2.22)

€ [1+Rpl=€,Tp. (2.23)

Finally, the continuity of the normal displacement
current, i,e,, E, at the boundary yields

(K)p [1 +RP] = (K)PTP - (KL)nLP-

From Egs. (2.22)-(2. 24) we obtain the p-polariza-
tion Fresnel equations for a conducting half-space

(2. 24)

Rp=(a =B -v)/(a+B+y), (2. 25a)
Tp=2 €o(Ko)/(a +B +7), (2. 25b)
Lp=[2y Ry),/K)p)/(@+B +7), (2. 25¢)
where a=¢ep(Ky),, (2. 26a)
B =€(Kp),, (2. 26b)
y=®3}[eo- €7]/(Ry),. (2. 26c)

For comparison, the corresponding classical
Fresnel equations are

R%=(a-8)/(a+8),
TS = 2¢,(Kp)/(a + B).

The above are easily obtained by neglecting the
polarization wave and applying the continuity con-
ditions to tangential B and H,®

(2. 27a)
(2.27)
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s polavization. For the s-polarized case no B
lies in the plane of propagation so no polarization
wave is excited. Using the continuity of tangential
E and H, it is easy to show that the Fresnel equa-
tions are identical to the classical equations

Rs = [(Ko)n - (KT)n]/[(KO)n + (KT)n] s (2. 283.)
T, = 2(Ro), /[(Rp)y + (Kp),] . (2. 28b)

This is not surprising since polarization waves
play no role in this case. But if the medium were
magnetic, i.e., if “magnetic polarization” cur-
rents could be excited, the classical equations for
s polarization would also be incorrect.

Since the s-polarization Fresnel equations for non-
magnetic media are independent of polarization
waves, we will henceforth consider only the p-po-
larization equations. Comparing the new equa-
tions'® (2. 25) with the classical equations (2. 27),
we see they become identical whenever y vanishes.
This quantity is proportional to three factors: the
sine squared of the angle of incidence K%= eosinaao ;
the difference between the transverse dielectrics
of the two media ¢€;- €4; and the normal component
of the longitudinal-polarization-wave wavelength in
units of the vacuum wavelength (K 2ot This last
factor is the important one. If no polarization
wave can propagate, i.e., if the wave is exponen-
tially damped in a short distance, ® 2);t is small
and imaginary, and hence y is negligible, and the
results are identical to those given by the classical
equations. '’ In other words, the factor y, and
therefore the new Fresnel equations, become im-
portant only when polarization waves propagate
with finite wavelengths.

Wave enevgies and their conservation.. Be-
cause observation are usually made on the reflected
or transmitted intensities or energies rather than
amplitudes, it is useful to relate the Fresnel equa-
tions to the corresponding coefficients of energy
flux. Since the time-averaged energy flow in an
EM wave is given by the real part of the complex
Poynting vector

S=(c/4m) s Re[ExT*] , (2. 29)

the energy fluxes of the incident, reflected, and
transmitted EM waves are

So=(c/8mMRy6,E2 | (2. 30a)

Sr=(c/8mRzeo |Rp|2EZ (2. 30b)

Sy=(c/87) Re[Rpe7]| Tp|?ES exp(- ZETa -T7) . (2.30c)

The polarization wave, however, has no Poynting
vector associated with it, transmitting energy me-
chanically by the motion of the charges.

The transmittance and reflectance of EM waves,
i.e., the fractions of incident energy transmitted

and reflected, are defined as
T=(ﬁ'§r/ﬁ‘§o)ﬂ-ho ’ (2. 31a)
R=- @-Sp/B-80)s.2.0 - (2. 31b)

From Egs. (2.30), the expressions for T and R are

T= Re[e’;‘(KT)n/(IEO)n]' Tp lz ’ (2.32a)
T=4Re[a*pl/|a+B+7|?, (2.32b)
R=|Rp|2=|(a-B=7)/(a+B+v)|? (2.33)

Applying Poyntings theorem to the energy flow
across the surface n-r=0, we find

T1-R=T+T" (2. 34)
with T'=4Re[a*y)/|a+B+v|?, (2. 35a)
T'=Re[e#LpTER)p/(K,),]. (2. 35b)

Thus, it appears that T’ is the fraction of the inci-
dent energy flowing into the polarization wave.

D. Fresnel Equations for a Slab

Some of the most interesting and useful phenom-
ena in optics are produced by the interference of
EM waves in thin dielectric slabs, Because we
expect that polarization waves may exhibit similar
interference properties, we next calculate the re-
flection and transmission equations for a slab of
material capable of supporting polarization waves,

Suppose our conducting medium is bounded by
two planes, one being fi. F=0 and the other being
f-T=d, as in Fig. 3. To the left of this slab of
thickness d is a dispersionless dielectric €,, and
to the right is another dispersionless dielectric
€,. Since no polarization waves can be excited
for s-polarized incidence we will consider only the

3

st

FIG. 3. Reflection and
transmission by a con-
ducting slab of thickness
d.

Fal
=l /—‘ﬁ%}"
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p-polarized case. The incident and reflected

waves in €, are

Ey= (3 XK,) exp(iky ¥ — iwt) , (2. 36a)
H, = 8¢, exp(iKy- F- iwt) (2. 36b)
B} = (8 ¥KR exp (ke ¥ - iwt) , (2. 36c)
H) = $€, exp(iK)- T— iwt) (2. 36d)

where the primed quantities refer to the reflected
waves. The conducting medium contains four
waves, polarization and EM waves propagating to
the right and to the left:

Ep= @XK,)Ap expikype T - iwt) (2.37a)

H,=8e;A, expl&y ¥ - iwt) (2.370)

B = (S XKL A exp Ky F = iwt) (2. 37¢)

{,- Se Al explilhe ¥ - iwt) | (2.37d)

K, A, explik, ¥ —iwt) | (2.37¢)

= KLAL exp(ik} ¥ —iwt) . (2. 371)
Finally, the transmitted wave in €, is

B, = B xK,)T expliky T - iwt) | (2. 38a)

H, = 8¢,T exp(ik,. T - iwt) . (2. 38b)

Snell’s law requires the p components of all wave
vectors to be equal (law of refraction), and the

n components of the primed wave vectors to be
equal to the negative » component of the corre-
sponding unprimed wave vector (law of reflection),
Applymg the continuity cond1t1ons and Snell’s law
to E and H at the surface fi- ¥=0 we obtain

(&), [1- R]= ®p),[Ar— Ap]+ B)p[A, +A44] , (2.39a)

®)p[1+R]= K)p[Ar+ 7] - K,)[AL - A}] ,(2.39b)
€ll1+R]=¢e [Ar+AY . (2.39c)

Similarly, at the surface fi-¥=d, we have

(I-{.T lAror = AL @p ]+ (K)p[Ap o + AL 0} ] = (f{.z)nT% ’

(2.40a)

®)p[Aror+Aroh] = K )[AL0r - AL 0)= K)p T,
(2. 40Db)

€r[Ar@r+Azo r]=€To, , (2.40c)
where 0 =exp(i-Ked) (2.41a)
¢'p=1 (2. 41b)

Solving (2. 39) and (2. 40) for R and 7, we find the
Fresnel equations of reflection and transmission
for a slab to be

R=X/Z ,
=Y/Z ,

(2. 42a)
(2. 42b)

HARRISON
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where X=(1-@r¢;)(ADy~DyA,@7¢)
= (@r=9)(CoByor—BoCo0z),
Y=(Ag+Dy) @1 ¢z [(9r— @ 7)(Ag - By)
+ (0L -9 )4 -Cy] (2. 43b)
Z=(1_—fﬂrfﬂz)(DoDa—AoAa‘PT‘PL)
~(@r=¢)(ByBy¢r—CoCopy) , (2. 43c)

(2. 43a)

and A=a-B-v , (2. 44a)
B=a-B+vy , (2. 44b)
C=a+B-y , (2. 44c)
D=a+B+y (2.444)

The subscript 2 on (2. 43) indicates that €, and ffo
are replaced by €, and K, in corresponding expres-
sions for a, B, and y. Although the above ex-
pressions are complicated, the appearance of the
phase factor ¢, as well as ¢, indicates interfer-
ence by polarization waves which we will discuss
shortly.

As in the case of a single boundary, the features
due to polarization waves are best seen by com-
paring the above Fresnel equations with the corre-
sponding classical equations. They are not difficult
to derive, and because they can be found in the lit-
erature'® we will write them directly,

=(A§ DS - D§AL0%)/(D{DS - ASAS0%), (2. 45a)
T°=[(D§) - (A9*] ¢/ (D§D§ - A§AS0%),  (2.45b)
with A°=a-8 , (2.46a)
DP=a+p (2. 46b)

and the subscripts having the same meaning as be-
fore. Again the factor which makes (2.42)-(2.43)
differ from (2 45) is (KL) If no polarization wave
exists, Im(KL) -, then ¢;, ¥=0, and the new
equations reduce to the classical. Note that in the
limit d—-, the equations for a slab reduce to the
single-boundary case, provided the EM and polar-
ization waves are at least slightly damped.

As was done in the single-boundary case, it is
useful to relate Eqs. (2.42) to the transmittance
and reflectance. It is an easy matter to show that

they are
R=|x/z|? (2.47a)
T=|v/Z|? (2. 470)

and since energy that is neither reflected nor trans-
mitted must be absorbed, the absorptance is
A=1-R-T (2. 47¢)

Multiple-veflection vesonance. I we take the
classical Fresnel equations (2.45), and for simplic-
ity assume the media on either side of the slab are
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identical and the EM waves are undamped, the
classical reflectance and transmittance for a slab
may be written

2R°(1 - cos2y,)
“(1-R+2R°(Q1 - cos2yy) ’

roe 1-Rp
(1-R°P+2R°(1 - cos2yy) ’

where R° is the reflectance at a single surface,
R°=[(a- p)/(a+p)? (2.49)
and Vp= &), 2md/2 . (2.50)

Equations (2.48) demonstrate the usual multiple-
reflection resonance in thin films that have applica-
tions, for example, in interference filters.

In analogy, let us look for multiple reflection of
the polarization wave and see under what conditions
it may be observed. In general, Egs. (2.42) indi-
cate a complex structure that involves multiple re-
flection of both EM and polarization waves. So ob-
servation of the polarization wave will be difficult
unless the EM wave can be neglected. One possi-
bility is the case where the wavelength of the EM
wave Ay is many orders of magnitude larger than
the wavelength of the polarization wave ;. For
this case, we choose the slab thickness to be

(2.51)

so that we may neglect ¢, and let ¢~ 1. Again as-
suming the same media on each side of the slab
and undamped waves, so that o, B, and y are real,
we find

R°

(2. 48a)

(2. 48b)

Ap>d>ng ,

y2(1 - cosy,)

R= a®(1+cosyp,)+y2(1-cosy,) ’ (2.52a)
o®(1+cosyy)

7 cos0,) 1720 —cosgy) * 2 9%

where ¢, =(K,),2md/x . (2. 53)

What is of particular significance about Egs. (2.52)
is the fact that even when o >y, structure in T or
R will be observed when

n odd
n odd

Yp=nt ,

or ’Vl(%)\L)n=d y

(2.54)

i.e., when the thickness is equal to an odd number

of half-wavelengths of the polarization wave. Be-

cause, in general, @ >y this property of Eqs.(2.52)
is more important for the observation of bulk plas-
ma waves of finite wavelength.

III. DISPERSION RELATIONS FOR INHOMOGENEOUS
WAVES IN AN ELECTRON GAS

A dispersion relation, in the sense that we use
the term, gives the wave vector # (which, in gener-

al, may be complex) as a function of the frequency
w (which we assume to be real). Dispersion rela-
tions for waves in an electron plasma have been
calculated by many authors and can be found in
most textbooks on plasma physics. But in Sec. II.,
we saw that waves in lossy media are, in general,
inhomogeneous, while all previous calculations
have been for homogeneous waves. For this rea-
son, and to show that even inhomogeneous waves
naturally separate into divergence-free(EM) and
curl-free (polarization) waves, the dispersion rela-
tions for inhomogeneous waves in a free-electron
model of a metal will be calculated below.

The motion of the distribution function f of the
electrons in a uniform neutralizing positive back-
ground is governed by the Boltzmann transport

equation
o % GE)

f +V -V, f
Making the Vlasov approximation, where the EM
interaction among electrons is replaced by a self-
consistent field which is incorporated into _F', and
assuming the electron gas is disturbed from equi-
librium by an EM force field proportional to
explik - ¥ —iwt), F may be written as

F:-e[E+(1/c)v><B] ,
T=—elkv/w+1+k ¥/ w)i]- B

(3.1)

(3.2a)
(3. 2b)

The last line arises because the self-consistent as
well as the EM fields must satisfy Maxwell’s equa-
tions.

Collision term. The collision term which in-
volves electron scattering by impurities, phonons,
etc., will be treated by the relaxation-time ansatz

(%J;>coll=_ T_l[f(-f’ ‘7’ t) _fs -f" F’ t)] ’ (3-3)

where 7! is the collision frequency, f is the dis-
tribution before scattering, and f is the distribu-
tion after scattering, i.e., the local equilibrium
distribution. The total equilibrium distribution for
the electrons is

fo= (3Ny/4ne®BYM*?{1 + exp[(e — €z)/RT] -,  (3.4)

where N, is the average density, € the energy per
particle, € the Fermi energy, and kT the thermal
energy. Because the Fermi energy is a function of
density, at 7'=0 being

= (7%/2m)(3rPN)? | (3.5)

and because the density varies in space and time

(due to the disturbance) as
N(F, t) =Ny + Ny ik F-wt) (3.6)

the local equilibrium distribution also varies. As-
suming the density variations are small compared
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to the equilibrium value, i.e., Ny>N,;, we can
make a linear expansion of f; about f,,

e (e )

Starting with Eq. (3.7), quantities with subscript 1
are small compared with the equilibrium value,
subscript 0, and have space-time dependence
e ®rF-98 “which will not be written explicitly.
Before proceeding any further, something must
be said about the temperature of the electrons and
their equilibrium distribution. In general, (3. 4) is
difficult to handle except in the limit of very low or
very high temperatures. But because the Fermi
energy of electrons at metallic densities is so
much greater than the thermal energy at room tem-
perature, (3.4) may be approximated to be at T=0.
On the other hand, at semiconductor densities,
(3.4) may be approximated to be at a high temper-
ature, i.e., by the Maxwell-Boltzmann distribution
function. Since our interest is primarily in metal-
lic plasmas, we will consider only the former case,
stating that the high-temperature results are anal-
ogous. In the low-temperature approximation,
(3.7) becomes

roer- () 552w

which may be substituted into (3. 1) along with (3. 2)
and (3.3). Upon assuming a linear solution of the
form

f(-f, v: t):f0+f1 ’

the Boltzmann equation (3. 1) has the solution

S (L)

(3.7

(3.8)

(3.9)

o) B

o€/ ™ —jw ik -V

« TN (3.10)
=1 . R >
T —iw—ik-Vv

A. Conductivity Tensor

From the distribution function, we obtain the cur-
rent density through the moment equation

IGD=-e [a%TF7,1) .

Since f, is symmetric in ¥, only f; contributes to
the current; this contribution has two parts: The
conductivity current proportional to E and the dif-
fusion current proportional to N;. The latter is
due to the space and time variation of the local
equilibrium density and is proportional to the col-
lision frequency. Thus,

31 =5'(E, w)'El

5 -
where &'=e /;13< fo) - LA AS—
—-iw+ik v

(3.11)

- ewD(k, w)N, , (3.12)

(3.13)

0o

HARRISON

w 2€p (3 870\ v
D_3N0fdv W (36 )t —iw ik -

To reduce (3. 12) to a simple conductivity form

(3.14)

J,=5%,, (3.15)
we define the dyadic D as

Dé o) -b& Wi, (3.16)
so that the equation of continuity

K-J,+ewN,=0 (3.17)
may be written as

D-i:—ewﬁN1 . (3.18)

Thus, the generalized conductivity tensor & be-
comes

5k, w)=[1- D&, )] & &, w) ,

where A7! represents the inverse of tensor A.
Evaluation of 5’ and D. At T=0 the Fermi-
Dirac distribution function (3. 4) becomes a step

function in energy or velocity., This permits us
to reduce the velocity integration to a solid-angle
integration by the identity

/davG(V) (—%> ——%—/ﬂn G(Wr). (3.20)

(3.19)

o€ | dmmo?
wi 1 3 dQet
Th 5'=-E£ - | —= .
St T w A fl+z'a-r (8.212)
1 2 dQr
wi Deggr S iEr (3. 210)

where T is a unit radial vector in spherical coor-
dinates and

-

R

= (3.22)

The preceding discussion has up to now been quite
general, applicable to both homogeneous and in-
homogeneous waves. But to evaluate the integrals,
the direction of k or 3 must be spec1f1ed and if

a single direction is given for k as is usually the
practice, the results apply only to homogeneous
waves. Toinclude inhomogeneous waves we choose
K to lie in the x-z plane with the real part of K

in the z direction, i.e., k or &, possesses only

x and z components. Evaluating the integrals under
these conditions (Appendix), we find the components
of 3’ to be

1+a%) -2 2242
ol = az(_j(—’_;l‘_—gx't a—ﬁf—ay‘i— , (3.23a)

;:(Q—Ag)((“T“z) tan"'q~ 1) ,

(3. 23b)
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’
Toe="3
2z aa aa as

A\(a.a 3~ 2)
U’:‘zo""ZC?)( P 8> < atar(xgilJ:za )) ’

A [24% - 4% 20 - a2 2
(a, a; 24 a,(1+a)tan.1a)  (3.23¢)

where A=3wi/87(r"! - iw) , (3.24)
A=%3=ad’+a’ , (3.25)

and the diffusion tensor to be
D =(=4/wT)@3/a®)(1 - tanta/a) . (3.26)

After some tedious but straightforward algebra,
the components of the total conductivity § may be
written

Ouy= 07 + (B2/K%)0y, ', (3.27a)
Oy=0p , (3.270)
04p= 0y — (B2 /K)oy (8.27¢)
and Oy = Ozx=(kxkz/kz)‘7M s (3.27d)
where op=(A4/a®){[(1+a?)/altana~1}  (3.28)

is the usual transverse conductivity,

A tan'1a>[ i tan"a) -1
oL—%-g—(l- ; 1+ (1-——a (3.29)

wT
is the longitudinal conductivity, and

(3. 30)

The difference between the conductivities for the
inhomogeneous wave above and that for the homo-
geneous wave is primarily in the factor oy, since
in the homogeneous case Im(k) is in the same di-
rection as Re(k) and therefore k,=0. We again
emphasize that for an inhomogeneous wave the di-
rection of K has no meaning; only Re(k) and Im(k)
have physically meaningful directions. Otherwise,
it would appear that the conductivity tensor (3, 27)
could be obtained from the usual diagonal expres-
sion for homogeneous waves by simply rotating the
coordinate system about the y axis,

Dispersion velations. The dispersion relations
for electric waves in a general medium are found
by requiring the wave fields to satisfy Maxwell’s
equations, which may be put in the form

[(c/w)k. KI-(c/wPkk -T@,w)] E,=0, (3.31)
€=I+ (4mi/w)§ (3.32)

is the dielectric tensor of the medium, So for a
nontrivial solution to (3. 31) the secular equations

det[(c/w P2~ (c/w)kk - €]=0 (3.33)

must be satisfied, giving the desired dispersion
relations,
Using the & we have just calculated, the com-

Oy=0r~0p .

where

-> o >
ponents of € for inhomogeneous waves in a degen-
erate plasmal® are

€n=€r+ (B/RDey (3.34a)
€y=€r , (3. 34b)
€=€p — (B2/RP)e, (3. 34c)
€4p= €= (Bl /FP)Ey (3. 344)

_ w? 3 (1+a®,
where €= w(w+i'r")—2?( a n a—l) ’
2 -1
cqe—wp 3 ( tan’lg .
€r=1 wlw+it?) 2 (1 a ) (3.35)

i tan-'g\] !
X[“:;:,(l-T)] s (3.36)

(3.37)
(3.38)

If the waves were homogeneous, (3.31) and (3, 34)
would give three dispersion relations: two trans-
verse solutions

(C/CO)ZET' ET= ET(ET! w)

€Ey=€r—€r ,

and a%= —k-Kod/(w+it ) .

(3.39)

associated with E polarized in the x and y direc-
tions, i.e., EM waves; and one longitudinal solu-
tion

€, (k,,w)=0 (3. 40)

associated with E polarized in the z direction, i.e.,
a polarization wave,

For inhomogeneous waves the y-polarized solu-
tion is unchanged, but the x- and z-polarized solu-
tions are now coupled, But a careful analysis of
the coupled equation shows that the solution is still
separable into dispersion relations of two nonin-
teracting waves, One is an EM wave with disper-
sion (3. 39) and polarization determined by

RuEy+ by E,=Kp Bp=0 (3.41)

and the other is a polarization wave with disper-
sion (3. 40) and polarization determined by

kyE,~k,E,=K; XE,;=0. (3.42)

To summarize, the dispersion relations for in-
homogeneous waves are formally identical to those
for homogeneous waves, the polarization of the
waves being determined by the more general con~
ditions that E of the EM wave is divergence-free
[Eq. (3.41)] and E of the polarization wave is ir-
rotational [Eq. (3.42)].

IV. APPLICATION TO METAL PLASMA

In Sec. III, we calculated the dispersion rela~-
tions for EM and polarization waves in an un-
bounded plasma, described by an electron gas in
a uniform positive background. Even with inhomo-
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geneous waves in a collisional plasma, we found
these two waves to be independent of each other,

at least in the unbounded plasma case. We now
assume that this result can be applied to a bounded
plasma and that the bulk dispersion relations are
applicable right up to the boundary surface. Since
the first assumption will be treated in detail in
another paper,®® we will only note here that, cer-
tainly, after a distance of a mean free path from
the surface, the electrons lose all knowledge of the
boundary. The second assumption depends par-
tially on the first and on the length of the transi-
tion region in which the plasma density reaches

its bulk value. In a metal plasma this transition
length is only a few angstroms, and so presents

no problems. We shall later see in connection
with the plasma capacitor problem that this is not
the case in classical gas plasmas, where such
sharp boundaries do not exist.

Although a metal can be approximated by an
electron gas in a uniform positive background,
care must be used since this lattice background
can interact quite strongly with the conduction
electrons. The difficulty lies with the valence band
electrons whose excitation energies (to the conduc-
tion band) are of the same order of magnitude as
the plasmon energy /w,. In our earlier report®
we applied the free-electron dispersion relations
to silver, because experimentally it is one of the
simpler metals to work with., To include the ef-
fects of the lattice, i.e., bound electrons, we as-
sumed a frequency-independent dielectric €,,22
which shifted the plasma frequency to its experi-
mentally measured value. But this is a gross
oversimplification, since at the relevant frequen-
cies the d-band electrons are excited causing a
resonant response in the lattice dielectric. 2

A more reasonable choice for a free-electron-
like metal is one of the alkali metals, since the
valence band transition occurs below w,.? Be-
cause the 2 electron transition occurs at frequen-
cies an order of magnitude higher, the effect of
the lattice can be approximated by a constant di-
electric or an “optical mass” (which is nearly
unity).

Assuming one electron per atom, the electron
densities for sodium and potassium are, respec-
tively, 2.54x10% cm™ and 1.34%x10% cm™. Using
these density values, we have computed the cor-
responding Fermi velocities, plasma frequencies,
and plasma wavelengths and presented them in
Table I together with the measured value of 1,2*%
Beside the Fermi velocity, the only other param-
eter that enters into the calculation of the disper-
sion relations is the collision time 7. Since ex-
perimental values of 7 are not available for thin
tilms of sodium and potassium, we assumed sev-

2
TABLE I. Plasma parameters for Na and K.
Metal Calculated Measured
vplem/sec)  wy(l/sec)  A(A) AA)
Na 1.07x10%  8.97x10% 2100 2180
K 8.52x10"  6.52x10'° 2890 3260

eral constant values ranging from w,7=500 to 50.
Using these parameters, we numerically calcu-
lated the dielectric components (3. 35) and (3. 36),
solved the dispersion relations (3. 39) and (3. 40),
and finally computed the Fresnel equations. For
simplicity we assumed that the medium bounding
the metal is a vacuum so that the parameters a,
B, and v in the Fresnel equations become

a =€k w)cosb | (4.1a)
B=(ep~sin®g)t/? | (4. 1b)
y=[sin®0(1 - €,)][K% - sin? 0] /2 | (4.1c)

where 0 is the angle of incidence.
A. Reflection by an Infinitely Thick Slab

Let us compare the reflection of p-polarized
light at a single plane surface, i.e., by a semi-
infinite slab of metal, as predicted by the classi-
cal and the new Fresnel equations. In Figs. 4
and 5, we have plotted log,o(1 - R), where R is the
reflectance, for several angles of incidence and
different collision frequencies.?® While it appears
that the effect of the longitudinal plasma wave be-
comes more pronounced with larger angles of in-
cidence and smaller collision frequencies, this is
somewhat misleading because of the inverted log-
arithmic scale (an increase on the vertical scale
corresponds to an increase in the reflectance,
i.e., approaching closer to unity). For example,
in Fig. 5 for w,7=500 and above w,, the classical
reflectance differs from unity by less than 107,
while our equations predict nearly 10™. Since the
reflectance must be measured to an accuracy of
one part in 10° or better, it seems doubtful whether
this effect of the longitudinal plasma wave may be
observed by present experimental methods. The
situation, however, seems more promising in the
case of thin metal films.

B. Thin Metal Films

At the end of Sec. II we found that when the
wavelength of the transmitted EM wave \, is much
larger than the wavelength of the polarization wave
Ar, multiple-reflection resonances of the polariza-
tion wave may be observed, provided the film
thickness d is chosen so that

Ap>d >Ny . (4. 2)
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FIG. 4. Comparison of the reflectance (R) of p-polar-
ized light predicted by the classical Fresnel equations
(dashed curve) and the new equations (solid curve) which
include the effect of polarization waves. The curves give
logyo(1 — R) versus frequency for several angles of inci-
dence. They were numerically computed for a free-
electron-like plasma with (a) vp=1.07x10® cm/sec (cor-
responding to the Fermi velocity of Na) and w,T =100,

and (b) vp=8.52%10" cm/sec (corresponding to K) and
w,T=200.

This condition may be satisfied in very thin metal
films at frequencies above but near w,.

Neglecting damping due to collisions, the dis-
persion relations for a free-electron-like plasma
near w, may be approximated by

K3=0/Ap)2 1= (0,/w)? (4.3a)
K3=(\/2)P =% (c/vp?[(w/wy)?~1], (4.3Db)
so that (A\/Ap)f~3(vp/c)(w/w)? . (4. 4)

Thus, \; is at least a couple orders of magnitude
larger than \;. Since, for w >w,, Ay>2, the upper
limit on the film thickness is

d<n, . (4.5)

From Table I, we find that d has to be a few hun-
dred angstroms or less for sodium or potassium.
Figs. 6-11 present numerical results for un-
backed (vacuum on both sides) potassium foils of
various thicknesses, for different angles of inci-
dence, and several collision frequencies. Figures
6-8 compare the transmittance, reflectance and
absorptance predicted by the classical equations
(2. 45) and our Egs. (2.42) for a 52- A-thick potas-
sium film. The large main resonance centered at
w,, and predicted by both the classical and our
theories, appears to be due to the refraction of
the EM wave in the foil, so that it propagates
nearly parallel to the surface. Such a wave will
have the appearance of a surface wave, the propa-
gation being almost along the surface and the elec-
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tric field nearly normal to it. In addition to this
main resonance, our results (solid line) clearly
show smaller structure due tothe multiple-reflec-
tion resonance. These resonances are especially
apparent in absorptance spectra for large angles
of incidence. Note the first resonance occurs at
w >w,, corresponding to \;=2d and, therefore,
shifts to larger w for thinner films (Fig. 10).

Although the main resonance at w, has been ob-
served in several metals®*%?7 no one has observed
the finer structure. One reason for this may be
that real metal effects, e.g., interband transitions,
may mask this structure. But while this may be
the case with metals such as silver, the alkali
metals which we have considered in this paper
should not have this limitation.?® A more probable
reason may be that the metal films used in these
experiments did not have the required smooth par-
allel surfaces. Since the standing waves require
coherent reflection, the surfaces must be smooth
and parallel to within a fraction of x;, i.e., to
within about 10 A. But recent work has shown that
these surfaces are quite rough® and the roughness
seems to be responsible for the reradiation discov-
ered by Brambring and Raether.’® A possible
remedy for this surface roughness and nonparal-
lelism may be sandwiching the metal between two
optically flat quartz plates. Such a procedure
would be especially advantageous with the alkali
metals which are too soft for making unsupported
films.

In addition to verifying the macroscopic theory
of polarization waves that we have presented here,
the thin film experiment described above would
shed some useful information on plasma waves
such as their dispersion relation. In particular,
it may provide the first observation of quantum
effects on the plasma wave when kpr <1 2° and
give a measure of the critical cutoff length A, in
solid state plasmas.

V. CONCLUDING REMARKS

In this paper, we have developed a macroscopic

s ] FIG. 5. Logyy(l—R)
FE—% 1 spectrum of Na at 60° in-
<2 cidence for several col-
2| Na h lision frequencies.
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REFLECTANCE

°
>

e
FS

FIG. 6. Reflectance
of p-polarized light by a
52 —/K-potassium foil for
an 80 ° angle of incidence
and a collision frequency
corresponding to w,T=50.

The curves were obtained
numerically using the
classical Fresnel equa-
tions (dashed curve) and
the new equations (solid

02} /
curve).

(Fresnel equations) theory of optical excitation of
polarization waves in isotropic homogeneous media,
and applied it to the problem of exciting bulk plas~
ma density waves (plasmons) in metals. The ef-
fect of these waves in semi-infinite metal slabs
was found to be very small, making them difficult
to observe. But in extremely thin metal films
their presence may be observed as resonances
when standing waves of these plasmons are set up.
Because the interaction of EM waves or oscilla-
tory E fields with bounded plasmas is as old as
plasma physics itself, a brief sketch of the rela-
tion between the present problem and similar
problems encountered in classical gas plasmas is

given below.
A. Plasma Capacitor and Tonks-Dattner Resonances

)

1.0

0.6}

ABSORPTANCE
T

0.2p

K |

T T

D=52A

WpT =50 .

9 =80°
FIG. 8. Absorptance of

p-polarized light by a 52~

A—potassium foil.,

0.0

0.6

s
0.8 1.0
(w/wp)

volved a parallel-plate capacitor filled with a ho-
Since the EM

mogeneous isotropic warm plasma.
wave plays no role, the longitudinal plasma waves

can be studied directly and the problem easily lends
itself to a normal mode analysis.®? At frequencies

corresponding to standing waves®®

While to our knowledge we were the first to sug-
gest that bulk plasma waves may be resonantly ex-

cited in metal films,® the phenomena of standing

longitudinal waves in a plasma slab was considered

earlier in connection with the plasma capacitor

problem.* As the name suggests, the problem in-

52 —.&—potassium foil.

TRANSMITTANCE

FIG. 7. Transmittance
of p-polarized light by a

wi=wi4 (3T /m) mm/d)? (5.1)
the capacitor responds resonantly, the absorptance
being similar to those in Fig. 10, but without the
broad absorption centered at w,.

The plasma capacitor problem arose out of ef-
forts to explain the Tonks-Dattner resonances®:
Resonant scattering of EM radiation by discharge

tube plasmas at discrete series of frequencies re-
Even though the standing-wave mech-

lated to w,,.
anism was correct, the capacitor theory, or more
precisely its cylindrical analog, failed to explain

08

0.6

ABSORPTANCE

60°

TRANSMITTANCE

0.2}

.8 1.0

14 06

0.0bs
(w/wp)

0.6

FIG. 9. Variation of transmittance and absorptance
of p-polarized light by a SZ—A-potassium foil with the

angle of incidence.
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FIG. 10. Absorptance of p-polarized light by potassium
foils; 260-A4 foil for several angles of incidence and w,T
=200 (a) and 100 (b). Comparison of the classical and
the new absorption by a 26-A—potassium foil (c).

these resonances because such plasmas cannot
satisfy the assumption of homogeneity. Instead
the density profile, and therefore w,, monotoni-
cally decreases from its maximum value at the
center and, thus, aplasma wave of frequency w will
originally propagate in a region where w >w, (¥)
until it reaches a critical distance where w= w,
X (7) < (Wp)may and is then reflected. Standing
waves of varying wavelength are thus created be-
tween the “edge” of the plasma and the plasma and
the critical point 7., and the resulting resonance
spectrum is qualitatively different from the homo-
geneous case.®

While the Tonks-Dattner resonances have been
studied primarily in laboratory plasmas, there
has also been considerable interest in plasma-
wave resonances in natural plasmas. Specifically,
recent studies by topside sounders® have revealed
resonances in the ionosphere which are related to
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w, but with the additional complication of a cyclo-
tron frequency due to the presence of earth’s mag-
netic field. Although these resonances are as yet
not completely understood, they appear to involve
longitudinal or electrostatic plasma waves.%

B. Other Polarization Waves

Although this paper has primarily considered
longitudinal plasma waves in metals, the theory
developed in Sec. II is applicable to any polariza-
tion waves in a homogeneous isotropic medium.
Thus, for example, the theory can be applied to
optical excitation of longitudinal optical (LO) pho-
nons in a polar crystal, such as an alkali halide.

In an experiment analogous to the plasma reso-
nance experiment,* Berreman® measured the LO
frequency in thin foils of LiF. But as with plasma
waves, the LO phonon has a dispersion relation,
shown in Fig. 12, so that at frequencies below w;g
polarization waves of finite wavelength will propa-

0.4

ABSORPTANCE

0_0 L 'l J i L (1
0.6 0.8 1.0 1.2 1.4
(w/wp)

FIG. 11. Absorptance of p-polarized light by a 104-A-
potassium foil for several angles of incidence and several
collision frequencies.
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FIG. 12. Dispersion
| relation of a LO phonon.

o (ka) ™

gate. Thus, we would expect smaller absorption
structure below w;, corresponding to standing
polarization waves. Such a measurement may be
more difficult to perform than the metal plasma
resonance since it requires thin single-crystal
films.*®
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APPENDIX: EVALUATION OF T AND V

In the spherical coordinate system(Fig. 13), the
integrals ~“a

T/d vy , (A1)

1+4i4- r
> oy
V= f Tl 7 (a2)
become

au 77
1+iazu+ia(l —u

y
2)1/2 cosg

sz;aﬂ dgof-l” (
A3)

ar
- du 7
V_j; d(p[l 1+ia,u+ia(l —u?)'”cosg .(A4)

For homogeneous waves, a,=0 and (A3) and (A4)
take on a simple form which is easily evaluated

T,.=T,,=(21/a?) {[1+a2/a,]tan"  a,- 1},
(A5)

T,..=(41/a® (1 -tan™a,/a,) ,

HARRISON 2

and V,=(4n/ia,) (1 -tan™'a,/a,) , (A8)
all other components being zero.

To evaluate (A3) and (A4) for the general inhomo-
geneous wave case, we need the value of the integral

T
- [ —%% (A7)
o V+wWCOSX

The indefinite integral of (A7) has the following
values®

. W+ COS X
(% - w? 2 arccos(————) , v¥>w?
V+wWCOS X
v-ttan(3x), v=w
— v tcot($x), v=—w

8, n1/2
. w +v cosx + (w?—v sinx
and (w?-v?%)""2In ( ) ,
¥ +w COSX

w?> v
Therefore, the integral (A7) is defined as long as
v? is unequal to w?

I=u/@2-wd)Y2,  2zw? . (A8)

From (A8), we find

a7 de 2
l v+wcosep (v2-w?)l/2”

ar
cospdp 21 v
v+wcosy w 1 ('uz—wz)l;2 ’

0
ar_cos’pde 2 v? (A9)
]; v+wcosep w? \(v¥-w?? —v),

fzwsimp cos"tpd<p~o
o v+wcose

2 ay1/2
vi-w
v+wcosy w® ( )

f sin (pdg _2r -
0

We now extend the integrals (A9) to include com-
plex v and w and state without proof that (A9) exists
as long as the absolute value of U does not vanish,

FIG. 13. Coordinate
system defining direction
of tensor components.,
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where
(A10)

The value of the first three integrals of the form

— 2 2 _ 2 : 2 2y,,2
U=v®-w=1+ai+2ia,u- (a;+al)u® .

1 ytdu
can be expressed as
I,=2tan"'a/a ,

I,=-2i(a,/a? [1 -tanta/a], (a11)

I=[(2a3- a})/a*] - (24} - &} (1+d®)]/a")tan" a,
where a?=3%- =a2+a?. (A12)

With (A9) and (A11), the desired integrals may now
be evaluated

2(1 + aZ) 2

T,.=2m [(g‘——a;—:ﬂ)tan' g - ( ﬁ;—fﬁz ] ’
Typ=Tou=2m(a,a,/a")[3 - (3+a%/a)tan"'a] ,
T,,=(21/a®)[(1 +a*/a)tan"'a - 1] (A13)

2_ 2 2_ 2014 2
T“zzﬂ[(Za,a4ax)_<2a, c;,,s(1+a))tan.1a],

TJW= wc_Tyx_sz—O )
-1
and V=449§(1 tan “), V,=0,
i a y
(A14)
41 a ( tan" 1a)
= — £ -
Ve i a® 1 a ’
with the condition that
la| #1 (A15)
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